Twisted Magnetic Knots and Links and their Current Alignment

Simon Candelaresi, Celine Beck

Solar Magnetic Field

(Trace)

(Trace)

(Prior and MacTaggart 2016)

(Yamasaki et al. 2021)

Magnetic Helicity

Measure for the topology:

$$H_{\rm M} = \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 2n\phi_{1}\phi_{2}$$
$$\boldsymbol{\nabla} \times \boldsymbol{A} = \boldsymbol{B} \quad \phi_{i} = \int_{S_{i}} \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{S}$$

 $n = \operatorname{number} \operatorname{of} \operatorname{mutual} \operatorname{linking}$

Conservation of magnetic helicity:

 $E_{\rm m}(k) \ge k |H(k)|/2\mu_0$

$$\lim_{\eta \to 0} \frac{\partial}{\partial t} \langle \boldsymbol{A} \cdot \boldsymbol{B} \rangle = 0 \qquad \eta = \text{magnetic resistivity}$$
$$\frac{\partial}{\partial t} \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = -2\eta \int_{V} \boldsymbol{J} \cdot \boldsymbol{B}$$

Realizability condition:

Magnetic energy is bound from below by magnetic helicity.

Topologies of Magnetic Fields

Hopf link

twisted field

trefoil knot

Borromean rings

magnetic braid

IUCAA (8_18) knot

Interlocked Flux Rings actual linking vs. magnetic helicity

$$H_{\rm M} \neq 0$$

$$H_{\rm M}=0$$

n=0

- initial condition: flux tubes
- isothermal compressible gas
 - viscous medium
 - periodic boundaries

(Del Sordo et al. 2010)

 $\frac{\partial \boldsymbol{A}}{\partial t} = \boldsymbol{U} \times \boldsymbol{B} + \eta \nabla^2 \boldsymbol{A}$ $\frac{\mathrm{D}\ln\rho}{\mathrm{D}t} = -\boldsymbol{\nabla}\cdot\boldsymbol{U}$ $\frac{\mathrm{D}\boldsymbol{U}}{\mathrm{D}t} = -c_{\mathrm{S}}^{2}\boldsymbol{\nabla}\ln\rho + \boldsymbol{J}\times\boldsymbol{B}/\rho + \boldsymbol{F}_{\mathrm{visc}}$

Interlocked Flux Rings

Magnetic Fields with a Twist

Non-helical fields can be made helical by twisting the field lines.

$$E_{\rm M}(t) = ?$$
 $\frac{\mathrm{d}}{\mathrm{d}t} H_{\rm m} = ?$ $\int_V J \cdot B \, \mathrm{d}V = ?$

Knots and Links

trefoil

Borromean rings

5-foil

IUCAA (8_18)

triple rings

Triple Rings

Knots

Low Resistivity Twisted Trefoil Knot

Conclusions

- Helicity alone not a good indicator.
- •Consider helicity production (current magnetic field alignment)
- Increased turbulent effects at lower resistivity leads to stronger J-B alignment and significant helicity production.

Candelaresi and Beck Physics of Plasmas, 30, 8 (2023) doi.org/10.1063/5.0148156

simon.candelaresi@gmail.com

BlenDaViz: github.com/SimonCan/BlenDaViz