Polynomial knot invariants in the dynamics of braided magnetic fields

Simon Candelaresi, David MacTaggart

Solar Magnetic Field

(Trace)

(Trace)

Twisted flux tubes may rise to the corona. (Prior and MacTaggart 2016).

Coronal Magnetic Fields

NASA

(Thiffeault et al. 2006)

Magnetic Helicity
$$H_{\rm m} = \int \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 0$$

Conservation of magnetic helicity:

$$\lim_{\eta \to 0} \frac{\partial}{\partial t} \int \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 0 \qquad \eta = \text{magnetic resistivity}$$

Beyond Magnetic Helicity

Describe knots, braids and links using knot polynomials:

1

Jones polynomials for the trefoil knot:

$$q - 1 + q^{-}$$

closure

Use Python package Topoly to find polynomials.

(Dabrowski-Tumanski et al. (2020))

Knots and Links as Braids

Periodic boundaries.

MHD Simulations

Link Spectrum

Pick a few random field lines and determine the link type.

Repeat ca. 200,000 times for each snapshot.

Trefoil Knot

Borromean Rings

Helical 3 Rings

Non-Helical 3 Rings

Conclusions

- Knot polynomials for braids (coronal magnetic loops).
- Reconnection leads to simplification.
- Simple knots/links preserve more easily.

- Single number from link distribution?
- Solar atmosphere: potential field closure?
- Sudden changes in spectrum related to violent solar events?