SNuBIC C2 On the Coupling of Multiphysics Systems

Simon Candelaresi H L

High-Performance Computing Center Stuttgart

Interface Coupling

Non-Matching or Adaptive Grids

Bulk (Volume) Coupling

Non-Matching or Adaptive Grids

Coupling Via Fluxes

General hyperbolic problem:

$$\partial_t \boldsymbol{u}_i + \boldsymbol{\nabla} \cdot \boldsymbol{f}_i(\boldsymbol{u}_i) = 0, \quad \boldsymbol{u}_i(t=0) = \boldsymbol{u}_i^0, \quad \boldsymbol{u}_i(\partial V_i) = \boldsymbol{u}_i^{\mathrm{BV}}$$

fluxes within the domain (between computational elements)

Example: Compressible Euler equations in 2d:

$$\partial_t \begin{pmatrix} \rho \\ \rho v_1 \\ \rho v_2 \\ e \end{pmatrix} + \partial_x \begin{pmatrix} \rho v_1 \\ \rho v_1^2 + p \\ \rho v_1 v_2 \\ (\rho e + p) v_1 \end{pmatrix} + \partial_y \begin{pmatrix} \rho v_2 \\ \rho v_1 v_2 \\ \rho v_2^2 + p \\ (\rho e + p) v_2 \end{pmatrix} = 0$$

Currently under development in Trixi for the Euler and heat flux systems.

boundary: $\partial_t(\rho e) = \hat{n} \cdot (\nabla(\rho e)) = \hat{n} \cdot \nabla f_{ba}(u_b)$

Coupling via Converter Functions

Two system with any number of shared variables, including 0:

Coupling via Converter Functions

Fixed Domain Markers

$$d = 1$$
 $d = 2$

Fixed Domain Markers

Can use self-defined converter functions.

Flexible geometry.

Somewhat wasteful usage of resources.

Domain Shifting

Conclusion

Dynamic domains. What are the criteria?