Methods for Quantifying Magnetic Field Topology

Simon Candelaresi

Solar Magnetic Field

(Trace)

(Trace)

(Prior and MacTaggart 2016)

(Yamasaki et al. 2021)

Coronal Magnetic Fields

NASA

(Thiffeault et al. 2006)

$\begin{array}{l} \text{Magnetic Helicity} \\ H_{\mathrm{m}} = \int \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V \quad \mathbf{B} = \nabla \times \mathbf{A} \\ \text{Conservation of magnetic helicity:} \end{array}$

$$\frac{\partial}{\partial t} \int_{V} \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V = -2\eta \int_{V} \mathbf{J} \cdot \mathbf{B} \qquad \eta = \text{magnetic resistivity}$$

Magnetic Braid Configurations

AAA (trefoil knot)

AABB (Borromean rings)

Interlocked Flux Rings

Intergalactic Bubbles

stratified medium

Bubbles' age is several tens of

millions of years.

(Fabian et al. 2000)

Numerical Experiments

Full resistive magnetohydrodynamics simulations with the Pencil Code.

 $\frac{\partial \mathbf{A}}{\partial t} = \mathbf{U} \times \mathbf{B} + \eta \nabla^2 \mathbf{A}$

$$\frac{\mathrm{D}\mathbf{U}}{\mathrm{D}t} = -c_{\mathrm{S}}^{2}\nabla\left(\frac{\ln T}{\gamma}\ln\rho\right) + \mathbf{J}\times\mathbf{B}/\rho - \mathbf{g} + \mathbf{F}_{\mathrm{visc}}$$

$$\frac{\partial \ln T}{\partial t} = -\mathbf{U} \cdot \nabla \ln T - (\gamma - 1) \nabla \cdot \mathbf{U} + \frac{1}{\rho c_V T} \left(\nabla \cdot (K \nabla T) + \eta \mathbf{J}^2 + 2\rho \nu \mathbf{S} \otimes \mathbf{S} + \zeta \rho (\nabla \cdot \mathbf{U})^2 \right)$$

 $\frac{D \ln \rho}{Dt} = -\nabla \cdot \mathbf{U}$ stratified medium hot, under-dense bubble

8

Initial Condition: Spheromak

Thermal Emission

Temperature Iso-Surfaces

Bubble Coherence

Magnetic Fields with a Twist

Non-helical fields can be made helical by twisting the field lines.

Simulated twisted knots and links in MHD (Pencil Code).

(Candelaresi & Beck 2023)

$$E_{\rm M}(t) = ?$$
 $\frac{\mathrm{d}}{\mathrm{d}t} H_{\rm m} = ?$ $\int_V \mathbf{J} \cdot \mathbf{B} \, \mathrm{d}V = ?$

Knots and Links

trefoil

Borromean rings

5-foil

triple rings

Triple Rings

Knots

Low Resistivity Twisted Trefoil Knot

Magnetic Braid

(Wilmot-Smith 2010)

Periodic braid topologically equivalent to Borromean rings.

Separation into two twisted field regions.

Conserved invariants like fixed point index and field line helicity.

Fixed Point Index

Trace magnetic field lines from z_0 to z_1 . mapping: $(x, y) \rightarrow \mathbf{F}_z(x, y)$ fixed points: $\mathbf{F}_1(x, y) = (x, y)$ **Color coding:** Compare (x, y) with $\mathbf{F}_1(x, y)$: $\mathbf{F}_1(x, y)$ $\mathbf{F}_1^x > x, \quad \mathbf{F}_1^y > y \quad \Longrightarrow \quad \text{red}$ $\mathbf{F}_1^x < x, \quad \mathbf{F}_1^y > y \quad \Box \qquad \text{yellow}$ $\mathbf{F}_1^x < x, \quad \mathbf{F}_1^y < y \quad \Longrightarrow \text{ green}$ (x, y) $\mathbf{F}_1^x > x, \quad \mathbf{F}_1^y < y \quad \Longrightarrow \quad \mathsf{blue}$

(Yeates et al. 2011)

Stability criteria

constraintequilibriumWoltjer (1958):
$$\frac{\partial}{\partial t} \int_{V} \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V = 0$$
 $\boldsymbol{\nabla} \times \mathbf{B} = \alpha \mathbf{B}$ Taylor (1974): $\frac{\partial}{\partial t} \int_{\tilde{V}} \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V = 0$ $\boldsymbol{\nabla} \times \mathbf{B} = \underset{\checkmark}{\alpha(a, b)} \mathbf{B}$ constant along field line

V = total volume \tilde{V} = volume along magnetic field line

Taylor state not reached due to fixed point conservation.

(Yeates et al. 2011)

Quadratic Helicities

$$\chi^{(2)}(\mathbf{B}) = \sum_{i,j,k} \frac{\Phi_i^2 \Phi_j \Phi_k n(L_j, L_i) n(L_i, L_k)}{(\Omega_i)}$$

$$\chi^{[2]}(\mathbf{B}) = \sum_{i,j} \frac{\Phi_i^2 \Phi_j^2 n^2(L_i, L_j)}{(\Omega_i)(\Omega_j)}$$

$$n(L_i, L_j) =$$
 number of mutual linking

$$\Phi_i = \text{ magnetic flux}$$

 $\Omega_i = ext{ volume of the flux tube}$

These are not invariant under general diffeomorphisms. Only under volume preserving ones.

Quadratic Helicities

Invariant under homogeneously density changing diffeomorphisms.

Field Line Helicity

$$\mathcal{A}(x,y) = \int_{L(x,y)} \mathbf{A} \cdot \mathrm{d}\mathbf{l}$$

In ideal conditions field line helicity is only being transported.

Beyond Magnetic Helicity

Describe knots, braids and links using knot polynomials:

Jones polynomials for the trefoil knot:

$$q - 1 + q^{-1}$$

closure

Use Python package Topoly to find polynomials.

(Dabrowski-Tumanski et al. (2020))

Knots and Links as Braids

Periodic boundaries.

MHD Simulations

Link Spectrum

Pick a few random field lines and determine the link type.

Repeat ca. 320,000 times for each snapshot.

Trefoil Knot

Borromean Rings

Helical 3 Rings

Non-Helical 3 Rings

Vortex Reconnection

Conclusions

- Magnetic helicity restricts the field's dynamics.
- Twist can induce a significant helicity production.
- Quadratic helicities are ideal invariants, but require field line tracing.
- Field line helicity ideal for fields with dominant field direction.
- Knot invariants to compute spectra of braids.