Twist and Current Alignment within non-trivial Magnetic Field Topologies

Simon Candelaresi, Celine Beck

Twisted Magnetic Fields

Twisted fields are more likely to erupt (Canfield et al. 1999).

Twist increases the stability of magnetic fields in tokamaks.

Solar Magnetic Field

(Trace)

(Trace)

Twisted flux tubes may rise to the corona. (Prior and MacTaggart 2016).

Coronal Magnetic Fields

NASA

(Thiffeault et al. 2006)

Study the tangling of solar magnetic field lines.

Topologies of Magnetic Fields

Hopf link

twisted field

trefoil knot

Borromean rings

magnetic braid

IUCAA knot

Magnetic Helicity

Measure for the topology:

$$H_{\rm M} = \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 2n\phi_{1}\phi_{2}$$
$$\boldsymbol{\nabla} \times \boldsymbol{A} = \boldsymbol{B} \quad \phi_{i} = \int_{S_{i}} \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{S}$$

 $n = \operatorname{number} \operatorname{of} \operatorname{mutual} \operatorname{linking}$

Conservation of magnetic helicity:

 $E_{\rm m}(k) \ge k |H(k)|/2\mu_0$

$$\lim_{\eta \to 0} \frac{\partial}{\partial t} \langle \boldsymbol{A} \cdot \boldsymbol{B} \rangle = 0 \qquad \eta = \text{magnetic resistivity}$$
$$\frac{\partial}{\partial t} \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = -2\eta \int_{V} \boldsymbol{J} \cdot \boldsymbol{B}$$

Realizability condition:

Magnetic energy is bound from below by magnetic helicity.

Intergalactic Bubbles

stratified medium

Bubbles' age is several tens of

millions of years.

(Fabian et al. 2000)

Numerical Experiments

Full resistive magnetohydrodynamics simulations with the PencilCode.

$$\frac{\partial \mathbf{A}}{\partial t} = \mathbf{U} \times \mathbf{B} + \eta \nabla^2 \mathbf{A}$$

$$\frac{\mathrm{D}\mathbf{U}}{\mathrm{D}t} = -c_{\mathrm{S}}^{2}\nabla\left(\frac{\ln T}{\gamma}\ln\rho\right) + \mathbf{J}\times\mathbf{B}/\rho - \mathbf{g} + \mathbf{F}_{\mathrm{visc}}$$

$$\frac{\partial \ln T}{\partial t} = -\mathbf{U} \cdot \nabla \ln T - (\gamma - 1) \nabla \cdot \mathbf{U} + \frac{1}{\rho c_V T} \left(\nabla \cdot (K \nabla T) + \eta \mathbf{J}^2 + 2\rho \nu \mathbf{S} \otimes \mathbf{S} + \zeta \rho (\nabla \cdot \mathbf{U})^2 \right)$$

 $\frac{D \ln \rho}{Dt} = -\nabla \cdot \mathbf{U} \qquad \begin{array}{c} \text{stratified medium} \\ \text{hot, under-dense bubble} \end{array}$

Initial Condition: Spheromak

Thermal Emission

Temperature Iso-Surfaces

Interlocked Flux Rings actual linking vs. magnetic helicity

$$H_{\rm M} \neq 0$$
 $H_{\rm N}$

$$H_{\rm M}=0$$

n=0

- initial condition: flux tubes
- isothermal compressible gas
 - viscous medium
 - periodic boundaries

(Del Sordo et al. 2010)

 $\frac{\partial \boldsymbol{A}}{\partial t} = \boldsymbol{U} \times \boldsymbol{B} + \eta \nabla^2 \boldsymbol{A}$ $\frac{\mathrm{D}\ln\rho}{\mathrm{D}t} = -\boldsymbol{\nabla}\cdot\boldsymbol{U}$ $\frac{\mathrm{D}\boldsymbol{U}}{\mathrm{D}t} = -c_{\mathrm{S}}^{2}\boldsymbol{\nabla}\ln\rho + \boldsymbol{J}\times\boldsymbol{B}/\rho + \boldsymbol{F}_{\mathrm{visc}}$

Interlocked Flux Rings

 $\tau = 4$

 $H_{\rm M}=0$

 $H_{\rm M} \neq 0$

Interlocked Flux Rings

IUCAA Knot and Borromean Rings

- Is magnetic helicity sufficient?
- Higher order invariants?

Borromean rings

IUCAA knot

 $H_{\rm M} = 0$

Magnetic Energy Decay

Higher order invariants?

Borromean Rings

t = 70

t = 78

Magnetic Braid

(Wilmot-Smith 2010)

- Periodic braid topologically equivalent to Borromean rings.
- Separation into two twisted field regions.
- Conserved invariants like fixed point index and field line helicity.

Magnetic Fields with a Twist

Helical fields can be made nonhelical by twisting the field lines.

Non-elical fields can be made helical by twisting the field lines.

$$E_{\rm M}(t) = ?$$
 $\frac{\mathrm{d}}{\mathrm{d}t} H_{\rm m} = ?$ $\int_V J \cdot B \, \mathrm{d}V = ?$

Knots and Links

trefoil

Borromean rings

5-foil

triple rings

Knots

t = 0

Triple Rings

Borromean Rings

t = 0

IUCAA Knot

Saffman Invariant

$$I_H = \int \mathrm{d}^3 r \langle h(x) h(x+r) \rangle$$

(Hosking 2021)

Non-zero for non-helical turbulence.

Gauge invariant.

Conserved quantity.

Current results only for isotropic homogeneous turbulence

Conclusions

- Magnetic helicity as constraint on plasma dynamics.
- Magnetic helicity leads to stability at small magnetic energy.
- Non-helical field exhibit intermediate energy decay (sometimes).
- Helicity alone not a good indicator. Consider helicity production.
- Saffman invariant for non-helical fields.